The Pullback Attractors for the Nonautonomous Camassa-Holm Equations
نویسنده
چکیده
منابع مشابه
Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملPullback attractors of nonautonomous reaction–diffusion equations
In this paper, firstly we introduce the concept of norm-to-weak continuous cocycle in Banach space and give a technical method to verify this kind of continuity, then we obtain some abstract results for the existence of pullback attractors about this kind of cocycle, using the measure of noncompactness. As an application, we prove the existence of pullback attractors in H 1 0 of the cocycle ass...
متن کاملUpper Semicontinuity of Pullback Attractors for the 3D Nonautonomous Benjamin-Bona-Mahony Equations
We will study the upper semicontinuity of pullback attractors for the 3D nonautonomouss Benjamin-Bona-Mahony equations with external force perturbation terms. Under some regular assumptions, we can prove the pullback attractors A(ε)(t) of equation, u(t)-Δu(t)-νΔu+∇·(-->)F(u)=εg(x,t), x ∈ Ω, converge to the global attractor A of the above-mentioned equation with ε = 0 for any t ∈ R.
متن کاملLyapunov Functions for Cocycle Attractors in Nonautonomous Diierence Equations
The construction of a Lyapunov function characterizing the pullback attraction of a cocycle attractor of a nonautonomous discrete time dynamical system involving Lipschitz continuous mappings is presented.
متن کامل